结合局部关键点集与测地线的三维人脸识别

张红颖*,杨维民,王汇三

中国民航大学电子信息与自动化学院,天津 300300

摘要 为了克服面部表情变化导致的三维人脸识别精度不高的问题,提出了一种结合局部关键点集与测地线的三 维人脸识别算法。首先,根据表情变化对人脸识别具有分区域影响的特性,将三维人脸划分出刚性区域和非刚性 区域;然后将由鼻部和眼部组成的区域作为刚性区域,进行有效关键点检测,提取多种几何特征,构成局部描述子,进行相似度匹配;接着在非刚性区域提取测地线环带并进行相似度匹配;最后将两个区域的匹配程度进行加权融合,得到最终的匹配结果。该算法分别在 Bosphorus 和 FRGC v2.0 数据库上进行了实验验证,结果表明算法识别 率分别达到了 97.01%和 98.63%,由此证明本文算法对三维人脸的表情变化有较强的稳健性。
 关键词 机器视觉;三维人脸识别;表情变化;关键点;局部描述子;测地线 中图分类号 TP391.4 文献标志码 A doi: 10.3788/LOP57.221503

3D Face Recognition Combining Local Keypoints with Isogeodesic Curves

Zhang Hongying*, Yang Weimin, Wang Huisan

College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China

Abstract To overcome the challenge of low accuracy of 3D face recognition caused by facial expression variations, a new algorithm that combines local keypoints with isogeodesic curves is proposed herein. First, a 3D human face is divided into rigid and non-rigid regions as facial expressions have different impacts on different regions. The rigid region comprising the eyes and a nose is proposed and effective keypoints are detected in this area. Then, a variety of geometric features are extracted to form a local descriptor for similarity matching. Furthermore, isogeodesic curves extracted from the non-rigid region are utilized for similarity matching. Finally, the matching degrees of the two regions are weighted and combined to obtain the final matching result. A number of experiments are conducted using the public databases Bosphorus and FRGCv2.0 and results show that the recognition rate of the proposed algorithm could reach 97.01% and 98.63%, respectively. The algorithm proposed herein is robust to variations in 3D facial expressions.

Key words machine vision; 3D face recognition; expression variations; keypoints; local descriptor; isogeodesic curves

OCIS codes 150.6910; 100.6890; 100.3008

1 引 言

人脸识别技术作为一种有效的身份验证方法, 在刑侦、安全、金融、教育等诸多领域具有广泛的应 用前景^[1-2]。其中,三维人脸包含了深度信息,其在 光照、姿态变化等情况下的稳健性比二维人脸更 优^[3],因此吸引了众多研究者的广泛关注。然而,对 于表情变化问题,由于表情变化会导致局部形状改 变,从而难以提取稳健的人脸特征,因此表情稳健的人脸识别一直都是三维人脸识别研究中的热点、 难点问题。

目前,基于区域的三维人脸识别方法在表情变 化的情形下应用颇广。该方法将人脸划分为刚性 区域和非刚性区域,并根据两者的特性设计不同的 匹配机制,从而较大幅度地提高了人脸识别算法的 性能。一些研究学者仅在刚性或非刚性区域上进

收稿日期: 2020-03-09; 修回日期: 2020-03-24; 录用日期: 2020-04-23

基金项目:国家重点研发计划(2018YFB1601200)、国家自然科学基金民航联合研究基金重点项目(U1533203)、中央高校基本科研业务费项目中国民航大学专项(3122018C004)

^{*} E-mail:carole_zhang0716@163.com

行研究[4-5],但这样会导致人脸的有效信息丢失,影 响识别的精准度。为了充分利用刚性和非刚性区 域的特征信息,提高识别精准度,一些研究学者将 刚性区域和非刚性区域相结合来对三维人脸进行 识别。其中桑高丽等[6]提出了基于鼻尖点区域分割 的表情稳健的三维人脸识别方法。首先在刚性区 域上计算点云的最小欧氏距离作为相似度,然后在 非刚性区域上进行特征提取和相似度匹配,最后将 两区域的相似度进行融合。但该算法在区域划分 时,依据鼻尖与测地线的距离进行划分,这样不仅 容易造成部分刚性区域特征丢失,还包含了部分非 刚性区域,影响了最终的识别精准度。文献[7]认 为鼻部在表情变化时具有较好的稳健性,因此先对 鼻部进行相应的特征提取,然后在非刚性区域内, 利用 Gabor 小波滤波器对深度图的表面法线特征 进行提取,最后对两区域进行相应的匹配。由于该 算法仅针对鼻部提取特征,没有充分利用人脸其余 刚性区域的特征,并且对深度图的表面法线进行特 征提取时,容易造成非刚性区域特征冗余。随着深 度学习的发展,许多研究学者已将深度学习应用于 三维人脸识别中。其中文献「8-10]对三维人脸数据 进行处理,得到面部特征点、深度图等信息,并以此 提取人脸特征,然后将特征进行组合,对网络进行 训练,最后,利用训练好的网络模型进行识别,达到 了较好的识别性能。

综上,针对将刚性和非刚性区域结合的方法, 若对两个区域进行较为精准的划分,并在此基础上 提取稳健的特征,将会进一步提升识别性能。因此 本文提出了结合局部关键点集和测地线的三维人 脸表情识别算法。该算法通过将人脸划分为刚性 区域和以测地线代表的非刚性区域,分别进行特征 匹配。首先依据形状指数,对刚性区域内的点集进 行筛选得到关键点,并对其计算几何特征,构造协 方差描述子进行相似度匹配;然后对人脸进行等间 隔测地线划分,对测地线条带进行 3DWW(3D weighted walkthrough)算子^[11]提取,计算所提取条 带以及条带之间 3DWW 算子的相似度;最后将两 种相似度进行加权融合,得到最终的识别结果。

2 本文算法

本文提出的人脸识别算法包括以下步骤:1)三 维人脸预处理;2)局部关键点集提取;3)等测地线 提取;4)特征提取、匹配;5)相似度融合。流程图 如图1所示。

Fig. 1 Flow chart of our algorithm

在本文算法流程中,首先对三维人脸数据进行 预处理,将人脸划分为由本文提出的鼻部和眼部组 合的刚性区域和由测地线表征的非刚性区域。在 刚性区域中,进行关键点检测,提取其曲率、形状指 数、Willmore energy和鼻尖到鼻根的欧氏距离作为 几何特征并构造成协方差描述子进行匹配。在非 刚性区域中,提取以鼻尖作为中心的等测地线,进 行相似度匹配。最后对两个区域的匹配程度进行 加权融合,得到最终的识别结果。

2.1 人脸预处理

在三维人脸数据采集过程中,由于采集设备或 场景等原因会造成数据中包含头发、耳朵等人脸以 外的冗余区域以及缺失人脸部分区域等问题,需要 对采集数据进行预处理。本文采用的预处理工作 主要包括:鼻尖点检测、三维人脸切割、去除离群 点、填补缺失区域。为了检测到有效的鼻尖点,首 先对三维人脸数据进行离群点去除,步骤如下:

1) 去除离群点:选取一个点与其相邻的八个 点,计算该点到任意一点的欧氏距离 d,并根据数 值大小进行排序。若最大距离 d_{max} 大于两倍的 d_{min},则认为最大距离对应的点为离群点。

2) 鼻尖点检测:鼻尖检测的方法有很多种,如 Spreeuwers^[12]借助人脸模型的内部坐标系,确定鼻 梁斜坡线与人脸对称平面交点作为鼻尖点。本文 直接将 z 轴上的最大值点作为鼻尖点。。

3) 三维人脸切割:由于三维人脸可近似等效为

球体,因此将鼻尖点视为球心,以100 mm 为半径对 三维人脸进行切割,得到所需的人脸区域。

4)填补缺失区域:首先利用人脸的对称性,得 到缺失部分所对应的数据,然后采用三次样条插值 对缺失部分进行计算,最后将对称所得数据和插值 计算所得数据取均值并进行填补。

2.2 关键点检测

在三维人脸结构中,由于表情变化会导致非刚 性区域中的关键点不稳定,影响识别效果,因此本 文提出以鼻部和眼部组成的区域作为人脸的刚性 区域,并对此区域进行关键点检测。

首先以鼻尖作为鼻子底部的起始点 p_{n_s} ,并将 其视为球心,以 10 mm 为半径切割出鼻子的部分区 域 S_{nose} 。在区域 S_{nose} 中求得以点 p_{n_s} 为起始的所 有方向向量,并映射到 YOZ 平面,然后分解出沿 Z 轴和Y轴的分量,如图 2 所示, θ 为方向向量与Z 轴 的夹角,其可以反映出沿 Z 轴下降的速率。夹角越

图 2 分解方向向量示意图

Fig. 2 Diagram of direction vector decomposition

小,说明下降速率越快,反之则越慢。由此可以找 出沿 Z 轴下降最慢的点,记为方向点 p_n。。

以起始点 p_{n_s} 到方向点 p_{n_o} 的方向向量记为 s_{so} 。为了方便寻找鼻根点,首先将三维人脸与方向 向量 s_{so} 投影到 XOY 平面上,并提取沿方向向量 s_{so} 上的所有点构成点集 p,如图 3(a)所示。

图 3 提取鼻根点。(a)提取沿方向向量 s_{so}上的点;(b)鼻根点寻找

Fig. 3 Point extracted in the nose root. (a) Points extracted along the direction vector s_{so} ; (b) point searched in the nose

然后将提取的点集 p 回归到三维空间中,并以 方向向量 s_{so} 的指向为基准计算点集 p 中相邻两点 的方向向量。最后将所有方向向量沿 X X X Z 轴分 解,并取与 Z 轴夹角 θ 的最小值所对应的方向向量 的指向点为鼻根点 p_{nf} ,如图 3(b)所示。

最后取鼻尖与鼻根之间的点集,组成鼻部的关键点集,如图 4(a)所示。为了提取出眼部刚性区域 点集,首先将提取出的鼻部区域投影到 XOY 平面, 求出过鼻根点 p_{n_r} 和鼻尖点 p_{n_s} 的直线 l₁。然后 过鼻根点,作垂直于直线 *l*₁ 的直线 *l*₂。最后将直线 回归到三维空间,获取过直线的所有点,即为眼部 区域,如图 4(b)所示。最后将鼻部跟眼部区域组合 起来,如图 4(c)所示。

其中,组合的点集区域的覆盖率可以进行调整。覆盖率定义过程如下:1)将三维人脸数据转换成深度图^[13],并利用 ASM(Active Shape Models) 算法^[14]对深度图进行鼻部和眼部的特征点定位,如 图 5(a)所示。2)选取出左、右内眼角点 *p*_{e1},*p*_{er},

图 4 提取鼻部和眼部区域。(a)鼻部区域;(b)眼部区域;(c)将眼部和鼻部区域组合 Fig. 4 Extracted areas of the nose and eyes. (a) Nose area; (b) eyes area; (c) areas combing nose with eyes

图 5 覆盖率定义过程。(a)特征点定位;(b)特征点选 取;(c)范围划分;(d)覆盖区域

Fig. 5 Definition process of coverage rate. (a) Feature points location; (b) feature points selection; (c) range partition; (d) coverage area

左、右鼻翼点 p_{nw_1}、p_{nw_r},以及在 Y 轴正、负方向上 距离内眼角最远的点 p_{el_u}、p_{el_d}、p_{er_u}、p_{er_d},如 图 5(b)所示。由于深度图中点的像素值对应深度 信息,因此可以在三维人脸中得到所选取的特征 点。3) 设垂直于 XOY 平面并过点 p_{el}、p_{nw_1} 的面 为鼻部左边界面,同理可得右边界面;设垂直于 XOY 平面并过鼻尖点 p_{ns} 的面为鼻部下边界面;设 过点 p_{el_u}、p_{er_u}并垂直于 XOY 的平面为眼部上边 界面,同理可得下边界面。最终得到了鼻部和眼部 的区域范围,如图 5(c)所示。4) 定义过鼻根与鼻尖 点并垂直于 XOY 的平面为鼻部基准面,过鼻根点 垂直于鼻部基准面的平面为眼部基准面,将各基准 面以 1 mm 步长同时向边界面移动,如图 5(d)所 示,则覆盖区域相对于整体区域中所包含点的比例 为覆盖率,公式为

$$r = \frac{N_{\rm c}}{N_{\rm a}} \times 100\%, \qquad (1)$$

其中, r 为覆盖率, N。表示覆盖区域中包含点的个数, N_a表示所有眼部和鼻部区域中包含点的个数。

本文设置了4种覆盖率:25%、50%、75%、 90%,如图6所示。并且覆盖率的大小对识别性能 的影响将在实验中进行讨论分析。

由图 6 可以看出,在眼部区域提取的关键点集 中,几何特征上有许多相似的点,故计算成本较大。 Dorai 等^[15]提出形状指数(SI, η_{si}),用于反映曲面 上每个点邻域的凹凸程度。本文利用其对区域内 的点进行筛选。形状指数公式为

$$\eta_{\rm SI}(p) = \frac{1}{2} - \frac{1}{\pi} \arctan \frac{k_{\rm max}(p) + k_{\rm min}(p)}{k_{\rm max}(p) - k_{\rm min}(p)}, (2)$$

- 图 6 不同覆盖率下的组合区域。(a)覆盖率为 25%;(b)覆 盖率为 50%;(c)覆盖率为 75%;(d)覆盖率为 90%
- Fig. 6 Combination areas with different coverage rates.
 (a) 25% coverage rate; (b) 50% coverage rate;
 (c) 75% coverage rate; (d) 90% coverage rate

其中, k_{max}(p)和k_{min}(p)分别为点p的最大主曲率 和最小主曲率。首先, 在 XOY 平面上以 2 mm 的 间隔进行均匀采样, 得到一组采样点; 然后对每个 采样点计算形状指数, 并选取形状指数最大的值作 为采样区域的关键点; 最终得到组合区域的关键点 集, 如图 7 所示。

- 图 7 经过关键点筛选后不同覆盖率下的组合区域。 (a)覆盖率为 25%;(b)覆盖率为 50%;(c)覆盖率为 75%;(d)覆盖率为 90%
- Fig. 7 Combination area under different coverage rates after keypoints filtering. (a) 25% coverage rate;
 (b) 50% coverage rate; (c) 75% coverage rate;
 (d) 90% coverage rate

从图 7 可以看出,经过筛选后的关键点数量有了 明显下降,并且关键点依旧集中在眼部和鼻部的中间 区域,这说明该部分的关键点能够较好地反映三维人 脸的几何特征,并且具有较高的稳健性和辨识度。

2.3 人脸测地线特征提取

在人脸结构中,非刚性区域存在许多辨识度高的特征。其中,因测地线特征对人脸表情变化的稳

健性较好^[11],所以本文针对人脸的非刚性区域进行 了测地线提取和匹配。

测地线又称为大地线或者短程线,其定义为曲 面上两个点之间的局域最短距离。作为空间结构 中的一种几何特征,其对结构变化有很强的稳健 性。本文以鼻尖为中心,进行等间距的测地线提 取。首先采用文献[11]提出的方法来计算鼻尖到 其余点的测地距离,将人脸划分4个等间隔区域,得 到人脸的等间隔测地线环带,如图8所标记的区域 为本算法提取的等间隔测地线带所在区域。

图 8 本文所提取的 4 条测地线带

Fig. 8 Four isogeodesic curves extracted in this paper

2.4 特征匹配与相似度融合

经过 2.2 节和 2.3 节的关键点和测地线提取 后,分别对关键点和测地线进行特征构造与匹配, 最后进行相似度融合,得到最终的识别效果。

首先对关键点进行几何特征提取并构造协方 差矩阵描述子。协方差通常可以用来衡量两个变 量之间的总体误差,并且将协方差矩阵作为描述子 不仅可以融合多种特征,还能描述不同特征的相关 性。经过理论和实验分析,本文采用形状指数、曲 率、鼻尖到鼻根的距离和 Willmore energy,对其构 造协方差矩阵描述子进行了匹配。

1)形状指数:反映了局部人脸的凹凸程度,如
 (2)式所示;

2)曲率:是几何体不平坦程度的一种衡量方式,公式为

$$k(p) = \sqrt{\frac{k_{\max}^{2}(p) + k_{\min}^{2}(p)}{2}}, \qquad (3)$$

其中, k_{max}(p)为点 p 的最大主曲率, k_{min}(p)为点 p 的最小主曲率。

3)由于每个人的鼻部骨骼结构不同,因此鼻尖 到鼻根的长度可以作为一种特征,即

$$d(p_{n_{s}}, p_{n_{r}}) = \sqrt{(x_{n_{s}} - x_{n_{r}})^{2} + (y_{n_{s}} - y_{n_{r}})^{2} + (z_{n_{s}} - z_{n_{r}})^{2}},$$
(4)

4) Willmore energy 在微分几何中,能够定量 表征给定表面偏离圆球的程度,即

$$w(p) = \frac{\left[k_{\max}(p) - k_{\min}(p)\right]^2}{4}.$$
 (5)

计算刚性区域内所有关键点的上述特征,集成 特征向量:

$$\mathbf{F}(p_i) = [k(p_i), \eta_{\mathrm{SI}}(p_i), d(p_{\mathrm{n_s}}, p_{\mathrm{n_r}}), w(p_i)]_{\circ}$$
(6)

协方差描述子表达式为

$$\boldsymbol{C}_{i} = \frac{1}{n} \sum_{i=1}^{n} \left[\boldsymbol{F}(\boldsymbol{p}_{i}) - \sum_{i=1}^{n} \boldsymbol{F}(\boldsymbol{p}_{i}) \right] \boldsymbol{\cdot} \\ \left[\boldsymbol{F}(\boldsymbol{p}_{i}) - \sum_{i=1}^{n} \boldsymbol{F}(\boldsymbol{p}_{i}) \right]^{\mathrm{T}}, \quad (7)$$

其中, n 是关键点个数。由于两个协方差矩阵之间 的相似性度量不在欧氏空间的求取范围之内,因此 需要对两个协方差矩阵之间的广义特征值进行对 数处理,处理公式为^[16]

$$S_{P}(\boldsymbol{C}_{1},\boldsymbol{C}_{2}) = \sqrt{\sum_{i=1}^{n} \ln^{2} [\lambda_{i}(\boldsymbol{C}_{1},\boldsymbol{C}_{2})]}, \quad (8)$$

式中 $\lambda_i(C_1,C_2)$ 为 C_1 、 C_2 的广义特征值。通过计算数据库中所有人脸的协方差得到与测试人脸协方 差最近的距离并选出其最小值,即视其与测试人脸 同属一个身份,记其相似度为 S_P 。

由于测地线环带的实质是三维点集,而 3DWW 算子能够有效地描述三维点集之间的空间位置关 系,并且对三维形变具有较好的稳健性,因此本研 究用 3DWW 算子进行相似度匹配。两个环带之间 的相似度 *S*_{ig} 定义为

$$S_{ig}(P,G) = \frac{\alpha}{N_{P}} \sum_{k=1}^{N_{P}} D\left[L(p_{k},p_{k}),L(g_{k},g_{k})\right] + \frac{2(1-\alpha)}{N_{P}(N_{P}-1)} \sum_{k=1}^{N_{P}-1} \sum_{h=k+1}^{N_{P}} D[L(p_{k},p_{h}), L(g_{k},g_{h})], \qquad (9)$$

式中: $P 和 G 为两个人脸模型; <math>p_k \pi g_k$ 为两个人脸 模型之间相应的环带; α 为权重系数,通常设为 0.1; N_p 是环带数量, $L(\cdot)$ 为计算两环带之间的距 离; $D[\cdot]$ 为两个条带点之间的空间分布差异。

最后根据上述点集区域、测地线环带相似度 值,采取加权融合方式得到最终的相似度 S,并将 其对应的人脸模型作为最终的识别结果。

 $S = \mu S_{\rm P} + (1 - \mu) S_{\rm ig}$, (10) 其中 μ 为融合系数。

3 实验结果与分析

3.1 数据库及实验方案

为了验证本文算法的有效性,分别在 FRGC

(Face Recognition Grand Challenge) v2.0^[17] 和 Bosphorus^[18]数据集上进行实验,并对算法进行 评估。

Bosphorus 数据库包含 105 个人,共 4666 幅三 维人脸图像。其中每个人脸有不同的姿态、不同的 表情以及不同的遮挡情况,并且带有愤怒、厌恶、恐 惧、快乐、悲伤和吃惊6种类别的表情。

FRGCv2.0数据库包含466个人,共4007个三 维人脸模型,其中每个人包含6种表情变化以及无 表情人脸。

本文将进行三类实验:1)确定鼻部和眼部区域 覆盖率对识别精度的影响,并选出最佳覆盖率; 2) 通过实验对比来确定最终的融合系数 μ;3) 在表 情变化时,对比本算法与不同算法在 Bosphorus、 FRGC2.0数据库上的识别效果。

3.2 实验参数设定

在选取关键点的过程中,由于鼻部和眼部区域 的覆盖率会影响关键点的数量,进而影响有效关键 点的提取,因此,本文设计了4种覆盖率,并分别对 其进行关键点提取和匹配。然后在不同数据库上 进行实验,如表1所示。

表1 不同覆盖率对应的人脸识别率

Table 1 Face recognition rates in terms of different coverage rates

	coverage rates	anne. 70	
Coverage rate	Accuracy		
	Bosphorus	FRGCv2.0	
25	92.98	92.66	
50	93.62	94.87	
75	95.54	97.16	
90	94.12	96.59	

表1展示了不同覆盖率下的三维人脸识别率, 由此可以看出,当覆盖率达到 75%时,识别效果最 好,在数据库 Bosphorus 和 FRGC2.0 达到了 95.54%和97.16%的识别率。但随着覆盖率增大 到 75%以上时,识别率反而下降。经过研究分析发 现,当覆盖率过大时,一部分处在非刚性区域的不 稳定特征点将被错误提取,导致特征匹配出现误 差,从而影响了识别的准确率。因此本文选取 75% 的覆盖率进行特征提取和识别。

为了确定出理想的融合系数,本文以不同融合 系数 μ 进行实验,选出最优结果作为最终的融合系 数μ。

表2展示了在两个数据库中对应不同融合系数 下的人脸识别率。可以看出,当融合系数为0.6时, 人脸识别率最高,并且相较于不加非刚性区域时, 识别率有所提升。进一步验证了非刚性区域存在 有效特征信息的结论。因此选取μ为0.6作为最终 的融合系数。

表 2 不同融合系数对应的人脸识别率

Table 2 Face recognition rates in terms of different fusion coefficients unit: %

Fusion coefficient μ	Accuracy			
	Bosphorus	FRGCv2.0		
0.1	89.12	89.63		
0.2	90.56	91.96		
0.3	92.66	93.23		
0.4	93.98	95.66		
0.5	95.93	97.98		
0.6	97.01	98.63		
0.7	96.43	98.23		
0.8	96.03	97.98		
0.9	95.95	97.25		

3.3 实验结果对比

本文将人脸划分为由鼻部和眼部组成的刚性 区域和以测地线带环带组成的非刚性区域。为了 验证本文算法对表情变化的有效性,选取在 Bosphorus 数据集上验证过的方法: 文献 [19] 方法、 文献[20]方法和文献[7]方法,并根据人脸表情分 为7组进行对比,如表3所示。

unit: $\frac{1}{2}$

表 3 在 Bosphorus 数据集上不同算法的对比

unit. %

Table 3	Comparison of different	algorithms on the Bosphorus data	base
---------	-------------------------	----------------------------------	------

Algorithm	Neutral	Anger	Disgust	Fear	Happy	Sadness	Surprise	All
In Ref. [19]	100.00	95.80	91.30	95.70	96.20	97.00	95.80	96.80
In Ref. [20]	100.00	95.80	88.40	81.40	88.70	97.00	93.00	93.40
In Ref. [7]	98.96	94.12	88.24	98.55	98.08	96.92	100.00	97.41
Ours	100.00	95.71	92.11	96.82	97.54	97.66	97.13	97.01

然后选取在 FRGCv2.0 数据集上验证过的方法:DA-NICP^[5]、文献[6]方法、文献[7]方法、文 献[19]方法、CPD^[21]、文献[9]方法、文献[10]方法, 将数据分为中性人脸、带表情人脸进行对比,如表 4 所示。

表 4 在 FRGCv2.0 数据集上不同算法的对比

Table 4 Comparison of different algorithms on the

	FRGCv2.0 database	unit: ½
Algorithm	Neutral	Non-neutral
DA-NICP	100.00	97.00
In Ref. [6]	100.00	98.52
In Ref. [7]	98.45	97.50
In Ref. [19]	100.00	96.30
CPD	100.00	97.91
In Ref. [9]	98.88	98.85
In Ref. [10]	98.70	98.70
Ours	100.00	98.63

由表 3 和表 4 可看出,本文提出的算法在 FRGCv2.0 取得了 rank-1 的识别水平,在 Bosphorus数据集上取得了rank-2 的识别水平。其 中 Bosphorus数据集上的识别率低于 FRGCv2.0 数据集上的识别率,经过分析发现,由于 Bosphorus 数据集中存在更多的遮挡情况,导致在识别计算过 程中,特征提取的数量和精度偏低,因此识别率较 低一些。整体来看,本文算法能够在表情变化下实 现稳健识别,并且拥有较好的识别效果。

4 结 论

针对表情变化引起的三维人脸识别算法性能 下降问题,本文提出了一种结合局部关键点集和测 地线的识别算法。首先在三维人脸中由鼻部和眼 部组成的刚性区域进行关键点集检测,并对其进行 筛选,得到稳健的关键点。然后对非刚性区域部分 进行等测地线提取。最后,对两个区域内进行相应 的几何特征提取和匹配,并将匹配结果进行加权融 合,实现最终的人脸识别。在 FRGCv2.0 和 Bosphorus数据集上进行了实验对比,实验结果表 明该算法识别率较高,并且对表情变化具有较强的 稳健性。但是在分析人脸匹配过程中发现,由于测 地线带环带仅进行了4等分提取,导致在遮挡较多 的情况下识别率低。未来将通过二维和三维的结 合来解决遮挡问题,以进一步提高识别的精准度。

参考文献

- [1] Wang J X, Lei Z C. A convolutional neural network based on feature fusion for face recognition[J]. Laser and Optoelectronics Progress, 2020, 57(10): 101508.
 王嘉欣, 雷志春. 一种基于特征融合的卷积神经网络人脸识别算法[J]. 激光与光电子学进展, 2020, 57 (10): 101508.
 [2] Cheng C, Da F P, Wang C X, et al. Pose invariant
- [2] Cheng C, Da F P, Wang C X, et al. Pose invariant face recognition using maximum Gabor similarity based on Lucas-Kanade algorithm [J]. Acta Optica Sinica, 2019, 39(7): 0715005.
 程超,达飞鹏, 王辰星,等. 基于 Lucas-Kanade 算法 的最大 Gabor 相似度大姿态人脸识别[J]. 光学学 报, 2019, 39(7): 0715005.
- [3] Lu J W, Chen H T, Ma X P, et al. 3D printing mask attacks detection based on multi-feature fusion
 [J]. Laser & Optoelectronics Progress, 2019, 56
 (3): 031002.
 陆经纬,陈鹤天,马肖攀,等.基于多特征融合的 3D
 打印面具攻击检测[J].激光与光电子学进展, 2019, 56(3): 031002.
- [4] Ming Y. Rigid-area orthogonal spectral regression for efficient 3D face recognition [J]. Neurocomputing, 2014, 129: 445-457.
- [5] Cheng S Y, Marras I, Zafeiriou S, et al. Statistical non-rigid ICP algorithm and its application to 3D face alignment[J]. Image and Vision Computing, 2017, 58: 3-12.
- [6] Sang G L, Zheng Z G, Yan C. Region-based expression invariant 3D face recognition [J]. Application Research of Computers, 2020, 37(3): 914-918.
 桑高丽,郑增国,闫超.一种基于区域分割的表情稳 健三维人脸识别方法[J/OL].计算机应用研究, 2020, 37(3): 914-918.
- [7] Emambakhsh M, Evans A. Nasal patches and curves for expression-robust 3D face recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(5): 995-1007.
- [8] Chen Z X, Zhou D K, Huang J W. Expression invariant 3D face recognition using convolutional neural networks [J]. Electronic Measurement Technology, 2017, 40(4): 157-161, 171.
 陈志轩,周大可,黄经纬.基于卷积神经网络的表情 不变三维人脸识别[J].电子测量技术, 2017, 40 (4): 157-161, 171.
- [9] Zhang X N, Zhang Z Y. Fast 3D face recognition

based on residual network [J]. Journal of Neijiang Normal University, 2019, 34(6): 61-67. 张笑楠,张自友. 基于残差网络的三维人脸识别方法 [J]. 内江师范学院学报, 2019, 34(6): 61-67.

- [10] Wu Z. Research on 3D face recognition based on convolutional neural network[D]. Hefei: University of Science and Technology of China, 2019: 32-46.
 武智.基于卷积神经网络的三维人脸识别研究[D]. 合肥:中国科学技术大学, 2019: 32-46.
- [11] Berretti S, del Bimbo A, Pala P. 3D face recognition using isogeodesic stripes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (12): 2162-2177.
- [12] Spreeuwers L. Fast and accurate 3D face recognition
 [J]. International Journal of Computer Vision, 2011, 93(3): 389-414.
- [13] Tian W J. 3D face feature extraction based on depth image [D]. Beijing: Beijing Jiaotong University, 2009: 69-72.
 田文君.基于深度图像的三维人脸特征提取[D].北 京:北京交通大学, 2009: 69-72.
- [14] Cootes T F, Taylor C J, Cooper D H, et al. Active shape models-their training and application [J]. Computer Vision and Image Understanding, 1995, 61(1): 38-59.
- [15] Dorai C, Jain A K. COSMOS-a representation scheme for free-form surfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(10): 1115-1130.

- Tuzel O, Porikli F, Meer P. Region covariance: a fast descriptor for detection and classification [C] // European Conference on Computer Vision (ECCV), Berlin: Springer-Verlag Berlin, 2006: 589-600.
- Phillips P J, Flynn P J, Scruggs T, et al. Overview of the face recognition grand challenge [C] // 2005
 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), June 20-25, 2005, San Diego, CA, USA. New York: IEEE Press, 2005: 947-954.
- [18] Savran A, Alyüz N, Dibeklioğlu H, et al. Bosphorus database for 3D face analysis[M] // Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008: 47-56.
- [19] Guo B, Da F P. Expression-invariant 3D face recognition based on local descriptors [J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(7): 1086-1094.
 郭蓓,达飞鹏.基于局部特征的表情不变3维人脸识 别算法 [J]. 计算机辅助设计与图形学学报, 2019, 31(7): 1086-1094.
- [20] Abbad A, Abbad K, Tairi H. 3D face recognition: multi-scale strategy based on geometric and local descriptors[J]. Computers & Electrical Engineering, 2018, 70: 525-537.
- [21] Deng X, Da F P, Shao H J. Expression-robust 3D face recognition based on feature-level fusion and feature-region fusion [J]. Multimedia Tools and Applications, 2017, 76(1): 13-31.